Kurser

Tilbage til oversigtssiden.

Blok 2 - 2011

Dette kursus giver en grundlæggende introduktion til relativistisk kvantefeltteori via kanonisk kvantisering. Standardmodellen gennemgås som en vigtig anvendelse, men det er et ret teoretisk kursus.
        

Jeg giver kurset 3 ud af 5 mulige, da det var et rigtig spændende kursus, med et godt pensum og fede opgaver. Eksamen var dog alt alt for svær i forhold til hvad vi havde fået fortalt i løbet af kurset, og det trækker voldsomt ned i min bog...

Elementar partikelfysik kursusbeskrivelse

Bogen der blev brugt i kurset var

En oversigt over hvad vi lavede i kurset kan ses i tabellen nedenfor:

Uge Pensum Beskrivelse
1 s. 3-7, 15-19 Combining Quantum Mechanics with Relativity: Why do we need Quantum Field Theory? Conventions, units, metric, notation. Lorentz invariance and scalar field theory. Canonical Quantization.
2 s. 22-29, 132-143 Continuing the quantization of scalar fields. A 'crash course' on the Lagrangian formalism. Conservation currents, canonical quantization and its particle interpretation. Something corresponding to Problems laws and Noether 3.2 and 3.3 in the book.
3 s. 73-77 Something corresponding to Problem 9.5 in the book, building up to the contents of chap. 10, but via canonical quantization.
4 s. 79-86, 205-215 Mandelstam variables, cross sections, kinematics of two-particle scattering.
5 s. 216-224, 227-228, 232-233, 235-236, 237-240 This week we will confront the Dirac equation, and work out the classical solutions for the free case (as usual, this is all we need to do scattering theory). Perhaps even a first bite at the Feynman rules for Dirac fermions, like the Feynman propagator.
6 s. 244-248, 267-270, 288-301, 335-343 We will go through Feynman rules for Dirac fermions. First a quick run through canonical quantization (it resembles a lot the canonical quantization of a complex scalar field which you looked at in a homework problem), then the Feynman propagator for Dirac fermions, Feynman rules in general, spin sums and 'gamma-matrix technology'. Finally the cross section for e+ + e- → e+ + e- in a theory where the electrons and positrons interact via a scalar field (a 'Yukawa coupling'). Quantum Electrodynamics (QED).
7 s. 351-361, 416-419, 421-422, 436, 531-532, 543-558, 563-566 We will add together all the pieces we have been building up to: gauge symmetry as in QED, its generalization to the non-Abelian case, a brief description of Quantum Chromodynamics (QCD), then the Higgs mechanism and the Electroweak Theory. This is the full Standard Model of elementary particle physics. Introduce non-Abelian through SU(2) first, then generalize to SU(N). Description of the Higgs mechanism. Then finally the Electroweak Theory. If there is time, I would like to do pion decay as well.